
zsh: Power Tools. Because having all your fingers is overrated.

zsh: Power Tools. Because having all your
fingers is overrated.

Paul L. Snyder <plsnyder@drexel.edu>

January 12, 2009

zsh: Power Tools. Because having all your fingers is overrated.

zsh: Power Tools. Because having all your fingers is overrated.

A non-partisan guide to shell selection

zsh: Power Tools. Because having all your fingers is overrated.

sh

* The original Bourne shell

* Written by Stephen Bourne for Version 7 Unix in
1977

* Usually, your ’/bin/sh’ is another shell running
in compatibility mode

Why should I use it?

* You are writing a "portable" shell script

* Your life will still be hell

* If you’re writing a large system, use a real
programming lanugage (Perl, Python, etc.)

zsh: Power Tools. Because having all your fingers is overrated.

ksh

* David Korn’s Korn shell

* MUCH better for programming than sh or *shudder*
csh

* Some interactive improvements

* Two major versions, ksh88 and ksh93 (finally
open-sourced in 2000)

* The FSF released pdksh (mostly ksh88-compatible)

Why should I use it?

* Misguided nostalgia

zsh: Power Tools. Because having all your fingers is overrated.

csh

* The "C" shell

* Ha!

* Introduced many now-standard interactive
features (job control, aliases, !-substitution

* Nastily brain-damaged scripting behavior

* Csh Programming Considered Harmful:
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot

* Implementations were historically very buggy

* The modern (and proprietary) Hamilton C Shell brings
the glory of csh to Windows.

Why should I use it?

* You are an idiot.

zsh: Power Tools. Because having all your fingers is overrated.

tcsh

* The ’t’ is for ’TENEX’

* The TENEX OS (later TOPS-20) had command
completion facilities

* tcsh introduced programmable command completion
to Unix shells

* Kept the csh syntax

Why should I use it?

* You like having cool people laugh at you.

* Actually, there is no good reason to use tcsh.

zsh: Power Tools. Because having all your fingers is overrated.

bash

* The Bourne-again shell

* ksh was proprietary and csh sucked, so bash was
created

* Considered a ksh descendant

* Default shell for most Linux distributions

* /bin/sh is usually bash under the covers (except
on Ubuntuish systems)

Why should I use it?

* You like the safety of being one of the herd

* Power scares you

* You are pathetically grateful for finally
receiving features zsh has had for years

zsh: Power Tools. Because having all your fingers is overrated.

The Z shell

* Mostly descended from ksh

* Absorbs interesting (and possibly conflicting)
features from other shells

* Possesses the lucid clarity of perl...

* ...and the streamlined elegance of emacs

Why should I use it?

* See remainder of presentation, below

zsh: Power Tools. Because having all your fingers is overrated.

Shell usage...

* Scripting

- Make common tasks easier

- Use POSIX sh for portability, not zsh

= Portable shell code is non-trivial

- Don’t write large systems using shell
scripting!

= Use, e.g., Perl, Python, Ruby

zsh: Power Tools. Because having all your fingers is overrated.

...and Shell Usage

* Interactive use

- Make common tasks easier

- Flexible command-line editing and history

- Globbing

- Completion

zsh: Power Tools. Because having all your fingers is overrated.

Agenda

* Startup files

* zsh’s modular design

* Variables

* Expansion and substitution

* Interactive use

* Completion

zsh: Power Tools. Because having all your fingers is overrated.

But first, a few words...

* zsh in all its gory glory is unspeakably
complex

* Happily, you don’t need to know much to start
using the shell

* zsh rewards knowledge with power

zsh: Power Tools. Because having all your fingers is overrated.

Startup files

Login files are run in this order ($ZDOTDIR
defaults to $HOME):

/etc/zshenv All shells, can’t be overridden
$ZDOTDIR/.zshenv All shells (with RCS option)
/etc/zprofile Login shells (with GLOBAL_RCS)
$ZDOTDIR/.zprofile Login shells (with RCS)
/etc/zshrc Interactive shells (GLOBAL_RCS)
$ZDOTDIR/.zshrc Interactive shells (with RCS)
/etc/zlogin Login shells (with GLOBAL_RCS)
$ZDOTDIR/.zlogin Login shells (with RCS)

zsh: Power Tools. Because having all your fingers is overrated.

Shutdown files

When exiting:

$ZDOTDIR/.zlogout Login shells (with RCS option)
/etc/zlogout Login shells (with GLOBAL_RCS)

zsh: Power Tools. Because having all your fingers is overrated.

How do you create your startup files?

* zsh is pretty bland until it has been
configured.

* Most of the cool options are turned off by
default.

* Two courses:

- Steal someone else’ .zshrc

- Use the menu-based zsh-newuser-install
(many distributions configure this to be
run by default)

zsh: Power Tools. Because having all your fingers is overrated.

Running zsh-newuser-install

- If this isn’t the case you can run it
yourself:

$ autoload -Uz zsh-newuser-install;
zsh-newuser-install -f

zsh: Power Tools. Because having all your fingers is overrated.

zsh Modules

* Portions of the shell are compiled as optional
.so modules. They can be loaded using ’zmodload’.
Modules include:
- zsh/zftp: command-line FTP program
- zsh/complete: Programmable completion system
- zsh/net/socket: ’zsocket’ command to
maniplate UNIX domain sockets

- zsh/net/tcp: ’ztcp’ command to create and
accept TCP connections

- zsh/zpty: Run a command under its own
pseudo-terminal

zsh: Power Tools. Because having all your fingers is overrated.

more zsh Modules

* A few more modules of interest:
- zsh/termcap and zsh/terminfo: output termcap
and terminfo sequences by capability name

- zsh/mapfile: tie a file to an associative
array

- zsh/newuser: menu-drive dot-file creation for
new users

- zsh/pcre and zsh/regex: Perl-compatible and
POSIX regexes

zsh: Power Tools. Because having all your fingers is overrated.

Arrays

$ beer=(’Hop Devil’ ’Golden Monkey’ \
> ’Old Horizontal’)
$ print $beer[2] # or ${beer[2]}
Golden Monkey
$ print $foo[-1] # negative subscripts allowed
Old Horizontal

* Note that zsh arrays start from 1, not 0!

* ’setopt ksharrays’ for ksh-style behavior

* bash 3 supports arrays of this type

zsh: Power Tools. Because having all your fingers is overrated.

Associative Arrays!

$ typeset -A collective
$ collective=(larks exaltation ravens \
> unkindness crows murder)
$ print $collective[larks]
exaltation
$ print ${(k)collective}
larks ravens crows

* You may be familiar with these as perl hashes

* Associative array support will be coming in
bash 4

zsh: Power Tools. Because having all your fingers is overrated.

Typed numeric variables

* Integers: typeset -i foo

* Alternate base integers: typeset -i 16 bar

* Floating point, fixed notation: typeset -F baz

* Floating point, sci notation: typeset -E womble

$ zmodload zsh/mathfunc
$ ((pi = 4.0 * atan(1.0)))
$ echo $pi
3.1415926536

zsh: Power Tools. Because having all your fingers is overrated.

Fun with typeset

* Create a tied variable/array pair:
typeset -T FOO foo

* Create a variable that always expands to
lowercase: typeset -l BAR

* Or uppercase: typeset -u BAZ

* Make a variable read-only: typeset -r WOMBLE

* Keep array entries unique: typeset -U path

zsh: Power Tools. Because having all your fingers is overrated.

Prompts

* PS1 displayed at regular command prompt

* PS2 for second-level prompt

- Also displays details of nested shell
constructs

* PS3 displayed inside ’select’ construct’

* PS4 is the trace prompt

* RPS1 and RPS2 are right prompts! ’RPS1=%t’

zsh: Power Tools. Because having all your fingers is overrated.

Prompt expansion (a partial list)

%M FQ hostname %# ’#’ if shell has
root, ’%’ otherwise

%m hostname up to ’.’ %_ nesting status of
shell constructs (PS2)

%n username %d Present working
directory - $PWD

%y User’s login tty %3d Last three
components of $PWD

%h Current history num %i Line number of a
trace (for PS4)

%n Current script or func %D Date in yy-mm-dd
%t time in 12-hour format

zsh: Power Tools. Because having all your fingers is overrated.

A bit more prompt expansion

%{..%} Escape sequence %D{format} format
date using strftime(3)

%(x.true-text.false-text) Ternary expression
E.g. %# = %(!.#.$)

Alternately %n(x.true-text.false-text)
or %(nx.true-text.false-text)
where n is an integer

Tests:
! privileges # effective uid is n
? exit status of last command is n
d day of the month is n
/ current absolute path has n elements

zsh: Power Tools. Because having all your fingers is overrated.

Expansion and Substitution

When you enter a command at the prompt, it is
mangled as follows:

1. History Expansion
2. Alias Expansion
3. Process Substitution,

Parameter Expansion,
Command Substitution,
Arithmetic Substitution, and
Brace Expansion

4. Filename Expansion
5. Filename Generation ("globbing")

zsh: Power Tools. Because having all your fingers is overrated.

History

* History is inspired by csh’s history system
- setopt CSH_JUNKIE_HISTORY to lobotomize zsh

!! is the last command executed
!!$ is the last word of the last command
!n refers to history command numbered ’n’
’history’ for a list, or add ’%h’ to your prompt
!str last command starting with ’str’
!# is the command you are typing right now!
!?str[?] is the last command containing ’str’
!{...} prevents confusion with surrounding text

zsh: Power Tools. Because having all your fingers is overrated.

Selecting a word in a history line

0 the first word
n the nth argument
^ the first argument
$ the last argument
% the word match by a ’str’ search
n-m words n through m

* all the arguments

zsh: Power Tools. Because having all your fingers is overrated.

History modifiers

For extra fun, use these with regular parameters!

h remove one trailing path component
t remove all but the last path component
r remove filename extension
e remove everything but the extension
l convert all words to lowercase
u convert all words to uppercase

[g]s/old/new[/] Replace ’old’ string with ’new’.
if ’new’ contains ’&’, ’&’ is replaced with
’old’

zsh: Power Tools. Because having all your fingers is overrated.

...and Modifing the Modifiers!

f repeat following modifier exhaustively
F:expr: repeat following modifier expr times
w apply following modifier to each word
W:sep: like w, but applies to parts of string

that are separated by ’sep’

zsh: Power Tools. Because having all your fingers is overrated.

Parameter expansion

* All the usual suspects. E.g.:
$ echo ${foo?BAR}
BAR
$ foo=FOO
$ echo ${foo?BAR}
FOO
$ baz=/this/is/a/path
$ echo ${baz%is*}
/this/
$ echo ${baz/*is}
/a/path

zsh: Power Tools. Because having all your fingers is overrated.

Change things up with parameter expansion flags

There are LOTS of these...this is just a small
selection
Place in parentheses before the parameter name,
e.g., ${(%)PS1}

% Expand prompt sequences
C Capitalize each resulting word
L Convert all letters to lowercase
o sort words in ascending order
O sort words in descending order
u expand only first unique occurence

of each word
j:str: join the words of arrays using ’str’
q quote the expanded words

zsh: Power Tools. Because having all your fingers is overrated.

Filename generation, a.k.a. globbing

- You all know about *, ?, [x] and [^y].

- How about ’ls bar<2-6>’? Only matches
existing files

- ^*FOO* globs all files without ’FOO’ in their
names

- *(foo|bar)* globs files with either ’foo’ or
’bar’

- ba^z* globs ’bar’ but not ’baz’

- (foo)# matches zero or more ’foo’s...(foo)##
matches any number

zsh: Power Tools. Because having all your fingers is overrated.

It gets worse...

- Use ksh-style glob operators to tweak your
parentheses

- *(foo) matches zero or more ’foo’s

- ?(foo) matches zero or one ’foo’s

- +(foo) matches one of more ’foo’s

- !(foo) match anything BUT ’foo’

- Are you frightened yet?

zsh: Power Tools. Because having all your fingers is overrated.

We’re not done...it’s time for globbing flags!

- (#l) lowercase characters match upper or lower
case; uppercase matches uppercase

- (#I) reenables case sensitivity
- (#b) activate backreferences for parenthesized

groups; store the matches in the $match array
and the indices in $mbegin and $mend

- (#B) ends backreferencing.

- (#aN) Use approximate matching! Allow up to N
errors in the match.

zsh: Power Tools. Because having all your fingers is overrated.

Ye gods, there’s more!

Glob qualifiers appear in parentheses at the end
of a glob specifier...

*(.) matches regular files only

*(/) matches all directories

*(@) matches all symbolic links

*(x) matches all owner-executable files

*(s) matches all setuid files

*(f{go+w}) matches group or other-writeable
files!

This next one even scares me...

*(estring) executes string as shell code! The
currently matched file is available in $REPLY;
override the return with $reply or $REPLY.

Yipes!

zsh: Power Tools. Because having all your fingers is overrated.

Recursive Globbing

One last trick...

$ ls **/foo*

Matches ’foo*’ in current directory or any subdir!

zsh: Power Tools. Because having all your fingers is overrated.

...And now for something completely simple

for x in *; do mv $x ${x:r}.bak; done

Too much work! In zsh, just use

for x in *; mv $x ${x:r}.bak

Actually, this is now deprecated, so it’s a bad
habit that I keep using it.

Similar short forms exist for ’if’, ’while’, and
so on.

Even better better:

zmv ’(file0?)’ ’$1.bak’

zsh: Power Tools. Because having all your fingers is overrated.

zmv

* zmv is the command-line rename tool you’ve
always wanted

$ zmv ’(*)-(*).mpeg3’ ’$2_$1.mp3’
$ zmv ’(*)’ ’${(L)1}’
$ alias mmv=’noglob zmv -W’
$ mmv *.pl.bak backups/*.pl

zsh: Power Tools. Because having all your fingers is overrated.

Correction

* Oopsing commands? ’setopt CORRECT’

* Fat-fingering filenames? ’setopt CORRECT_ALL’

* Prevent a command from being corrected:
alias mv=’nocorrect mv’

zsh: Power Tools. Because having all your fingers is overrated.

MULTIOS and redirection

setopt MULTIOS for built-in tee functionality

$ ls >>file1 >file2 | cat

$: > *

This truncates every file matched by *!

Well, not quite, as long as NO_CLOBBER is set.
For maximum damage, use

$: >| *

zsh: Power Tools. Because having all your fingers is overrated.

More MULTIOS

How about a NULLCMD?

$ <first <second >combined

Change the default command by setting NULLCMD to
something other than ’cat’

$ >combined
zsh: file exists: combined

NOCLOBBER saves your bacon.

zsh: Power Tools. Because having all your fingers is overrated.

Useful interactive features

* Multi-line editing

* Variable editing! ’vared path’

* ’zed’ is zsh’s built-in editor...use your zsh
bindings for a quick edit
(use C-j to save and exit or C-g to cancel)

* One of my favorites: the buffer stack

$ bindkey ’\eq’ push-line-or-edit

* Stuff the buffer with ’print -z’

zsh: Power Tools. Because having all your fingers is overrated.

Finally, completion

* I’m not going to tell you how to write new
completion functions

* I don’t want to be lynched.

* Besides, most anything you’d want to complete
is probably in there already.

* To get started using completion, just turn it
on when you run zsh-newuser-install

zsh: Power Tools. Because having all your fingers is overrated.

Education through Completion

* Forgot an option? Just hit TAB

* Look at completions for ’tar’, ’mplayer’,
’emerge’, or ’dpkg’

zsh: Power Tools. Because having all your fingers is overrated.

Bedtime reading

* man zsh and its 15 subpages (or just man
zshall)

* http://www.zsh.org

- Read the zsh user manual...friendly and
useful

* Tips and tricks

- http://www.rayninfo.co.uk/tips/zshtips.html
- http://www.grml.org/zsh/zsh-lovers.html

* http://www.zshwiki.org

zsh: Power Tools. Because having all your fingers is overrated.

Fin.

zsh: Power Tools. Because having all your fingers is overrated.

Selecting a random file from the current directory

$ files=(*); echo $files[$RANDOM%$#files]]

zsh: Power Tools. Because having all your fingers is overrated.

For the brain-damaged by Windows: file associations

$ alias -s txt=less

This can be bad for security!

zsh: Power Tools. Because having all your fingers is overrated.

Global aliases work anywhere in the line

$ alias -g ...=’../..’
$ alias -g L=’| less’
$ alias -g G=’| egrep’

zsh: Power Tools. Because having all your fingers is overrated.

Name your favorite directories with CDABLEVARS

zsh: Power Tools. Because having all your fingers is overrated.

Eschew cd with AUTOCD and AUTOPUSHD

	A non-partisan guide to shell selection
	sh
	ksh
	csh
	tcsh
	bash
	The Z shell
	Shell usage...
	...and Shell Usage
	Agenda
	But first, a few words...
	Startup files
	Shutdown files
	How do you create your startup files?
	Running zsh-newuser-install
	zsh Modules
	more zsh Modules
	Arrays
	Associative Arrays!
	Typed numeric variables
	Fun with typeset
	Prompts
	Prompt expansion (a partial list)
	A bit more prompt expansion
	Expansion and Substitution
	History
	Selecting a word in a history line
	History modifiers
	...and Modifing the Modifiers!
	Parameter expansion
	Change things up with parameter expansion flags
	Filename generation, a.k.a. globbing
	It gets worse...
	We're not done...it's time for globbing flags!
	Ye gods, there's more!
	Recursive Globbing
	...And now for something completely simple
	zmv
	Correction
	MULTIOS and redirection
	More MULTIOS
	Useful interactive features
	Finally, completion
	Education through Completion
	Bedtime reading
	Fin.
	Selecting a random file from the current directory
	For the brain-damaged by Windows: file associations
	Global aliases work anywhere in the line
	Name your favorite directories with CDABLEVARS
	Eschew cd with AUTOCD and AUTOPUSHD

