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sh

* The original Bourne shell

* Written by Stephen Bourne for Version 7 Unix in
1977

* Usually, your ’/bin/sh’ is another shell running
in compatibility mode

Why should I use it?

* You are writing a "portable" shell script

* Your life will still be hell

* If you’re writing a large system, use a real
programming lanugage (Perl, Python, etc.)
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ksh

* David Korn’s Korn shell

* MUCH better for programming than sh or *shudder*
csh

* Some interactive improvements

* Two major versions, ksh88 and ksh93 (finally
open-sourced in 2000)

* The FSF released pdksh (mostly ksh88-compatible)

Why should I use it?

* Misguided nostalgia
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csh

* The "C" shell

* Ha!

* Introduced many now-standard interactive
features (job control, aliases, !-substitution

* Nastily brain-damaged scripting behavior

* Csh Programming Considered Harmful:
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot

* Implementations were historically very buggy

* The modern (and proprietary) Hamilton C Shell brings
the glory of csh to Windows.

Why should I use it?

* You are an idiot.
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tcsh

* The ’t’ is for ’TENEX’

* The TENEX OS (later TOPS-20) had command
completion facilities

* tcsh introduced programmable command completion
to Unix shells

* Kept the csh syntax

Why should I use it?

* You like having cool people laugh at you.

* Actually, there is no good reason to use tcsh.
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bash

* The Bourne-again shell

* ksh was proprietary and csh sucked, so bash was
created

* Considered a ksh descendant

* Default shell for most Linux distributions

* /bin/sh is usually bash under the covers (except
on Ubuntuish systems)

Why should I use it?

* You like the safety of being one of the herd

* Power scares you

* You are pathetically grateful for finally
receiving features zsh has had for years
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The Z shell

* Mostly descended from ksh

* Absorbs interesting (and possibly conflicting)
features from other shells

* Possesses the lucid clarity of perl...

* ...and the streamlined elegance of emacs

Why should I use it?

* See remainder of presentation, below
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Shell usage...

* Scripting

- Make common tasks easier

- Use POSIX sh for portability, not zsh

= Portable shell code is non-trivial

- Don’t write large systems using shell
scripting!

= Use, e.g., Perl, Python, Ruby
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...and Shell Usage

* Interactive use

- Make common tasks easier

- Flexible command-line editing and history

- Globbing

- Completion
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Agenda

* Startup files

* zsh’s modular design

* Variables

* Expansion and substitution

* Interactive use

* Completion
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But first, a few words...

* zsh in all its gory glory is unspeakably
complex

* Happily, you don’t need to know much to start
using the shell

* zsh rewards knowledge with power
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Startup files

Login files are run in this order ($ZDOTDIR
defaults to $HOME):

/etc/zshenv All shells, can’t be overridden
$ZDOTDIR/.zshenv All shells (with RCS option)
/etc/zprofile Login shells (with GLOBAL_RCS)
$ZDOTDIR/.zprofile Login shells (with RCS)
/etc/zshrc Interactive shells (GLOBAL_RCS)
$ZDOTDIR/.zshrc Interactive shells (with RCS)
/etc/zlogin Login shells (with GLOBAL_RCS)
$ZDOTDIR/.zlogin Login shells (with RCS)
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Shutdown files

When exiting:

$ZDOTDIR/.zlogout Login shells (with RCS option)
/etc/zlogout Login shells (with GLOBAL_RCS)
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How do you create your startup files?

* zsh is pretty bland until it has been
configured.

* Most of the cool options are turned off by
default.

* Two courses:

- Steal someone else’ .zshrc

- Use the menu-based zsh-newuser-install
(many distributions configure this to be
run by default)
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Running zsh-newuser-install

- If this isn’t the case you can run it
yourself:

$ autoload -Uz zsh-newuser-install;
zsh-newuser-install -f
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zsh Modules

* Portions of the shell are compiled as optional
.so modules. They can be loaded using ’zmodload’.
Modules include:
- zsh/zftp: command-line FTP program
- zsh/complete: Programmable completion system
- zsh/net/socket: ’zsocket’ command to
maniplate UNIX domain sockets

- zsh/net/tcp: ’ztcp’ command to create and
accept TCP connections

- zsh/zpty: Run a command under its own
pseudo-terminal
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more zsh Modules

* A few more modules of interest:
- zsh/termcap and zsh/terminfo: output termcap
and terminfo sequences by capability name

- zsh/mapfile: tie a file to an associative
array

- zsh/newuser: menu-drive dot-file creation for
new users

- zsh/pcre and zsh/regex: Perl-compatible and
POSIX regexes
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Arrays

$ beer=(’Hop Devil’ ’Golden Monkey’ \
> ’Old Horizontal’)
$ print $beer[2] # or ${beer[2]}
Golden Monkey
$ print $foo[-1] # negative subscripts allowed
Old Horizontal

* Note that zsh arrays start from 1, not 0!

* ’setopt ksharrays’ for ksh-style behavior

* bash 3 supports arrays of this type
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Associative Arrays!

$ typeset -A collective
$ collective=(larks exaltation ravens \
> unkindness crows murder)
$ print $collective[larks]
exaltation
$ print ${(k)collective}
larks ravens crows

* You may be familiar with these as perl hashes

* Associative array support will be coming in
bash 4
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Typed numeric variables

* Integers: typeset -i foo

* Alternate base integers: typeset -i 16 bar

* Floating point, fixed notation: typeset -F baz

* Floating point, sci notation: typeset -E womble

$ zmodload zsh/mathfunc
$ (( pi = 4.0 * atan(1.0) ))
$ echo $pi
3.1415926536
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Fun with typeset

* Create a tied variable/array pair:
typeset -T FOO foo

* Create a variable that always expands to
lowercase: typeset -l BAR

* Or uppercase: typeset -u BAZ

* Make a variable read-only: typeset -r WOMBLE

* Keep array entries unique: typeset -U path
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Prompts

* PS1 displayed at regular command prompt

* PS2 for second-level prompt

- Also displays details of nested shell
constructs

* PS3 displayed inside ’select’ construct’

* PS4 is the trace prompt

* RPS1 and RPS2 are right prompts! ’RPS1=%t’
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Prompt expansion (a partial list)

%M FQ hostname %# ’#’ if shell has
root, ’%’ otherwise

%m hostname up to ’.’ %_ nesting status of
shell constructs (PS2)

%n username %d Present working
directory - $PWD

%y User’s login tty %3d Last three
components of $PWD

%h Current history num %i Line number of a
trace (for PS4)

%n Current script or func %D Date in yy-mm-dd
%t time in 12-hour format
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A bit more prompt expansion

%{..%} Escape sequence %D{format} format
date using strftime(3)

%(x.true-text.false-text) Ternary expression
E.g. %# = %(!.#.$)

Alternately %n(x.true-text.false-text)
or %(nx.true-text.false-text)
where n is an integer

Tests:
! privileges # effective uid is n
? exit status of last command is n
d day of the month is n
/ current absolute path has n elements
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Expansion and Substitution

When you enter a command at the prompt, it is
mangled as follows:

1. History Expansion
2. Alias Expansion
3. Process Substitution,

Parameter Expansion,
Command Substitution,
Arithmetic Substitution, and
Brace Expansion

4. Filename Expansion
5. Filename Generation ("globbing")
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History

* History is inspired by csh’s history system
- setopt CSH_JUNKIE_HISTORY to lobotomize zsh

!! is the last command executed
!!$ is the last word of the last command
!n refers to history command numbered ’n’
’history’ for a list, or add ’%h’ to your prompt
!str last command starting with ’str’
!# is the command you are typing right now!
!?str[?] is the last command containing ’str’
!{...} prevents confusion with surrounding text
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Selecting a word in a history line

0 the first word
n the nth argument
^ the first argument
$ the last argument
% the word match by a ’str’ search
n-m words n through m

* all the arguments
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History modifiers

For extra fun, use these with regular parameters!

h remove one trailing path component
t remove all but the last path component
r remove filename extension
e remove everything but the extension
l convert all words to lowercase
u convert all words to uppercase

[g]s/old/new[/] Replace ’old’ string with ’new’.
if ’new’ contains ’&’, ’&’ is replaced with
’old’
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...and Modifing the Modifiers!

f repeat following modifier exhaustively
F:expr: repeat following modifier expr times
w apply following modifier to each word
W:sep: like w, but applies to parts of string

that are separated by ’sep’
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Parameter expansion

* All the usual suspects. E.g.:
$ echo ${foo?BAR}
BAR
$ foo=FOO
$ echo ${foo?BAR}
FOO
$ baz=/this/is/a/path
$ echo ${baz%is*}
/this/
$ echo ${baz/*is}
/a/path
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Change things up with parameter expansion flags

There are LOTS of these...this is just a small
selection
Place in parentheses before the parameter name,
e.g., ${(%)PS1}

% Expand prompt sequences
C Capitalize each resulting word
L Convert all letters to lowercase
o sort words in ascending order
O sort words in descending order
u expand only first unique occurence

of each word
j:str: join the words of arrays using ’str’
q quote the expanded words
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Filename generation, a.k.a. globbing

- You all know about *, ?, [x] and [^y].

- How about ’ls bar<2-6>’? Only matches
existing files

- ^*FOO* globs all files without ’FOO’ in their
names

- *(foo|bar)* globs files with either ’foo’ or
’bar’

- ba^z* globs ’bar’ but not ’baz’

- (foo)# matches zero or more ’foo’s...(foo)##
matches any number
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It gets worse...

- Use ksh-style glob operators to tweak your
parentheses

- *(foo) matches zero or more ’foo’s

- ?(foo) matches zero or one ’foo’s

- +(foo) matches one of more ’foo’s

- !(foo) match anything BUT ’foo’

- Are you frightened yet?
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We’re not done...it’s time for globbing flags!

- (#l) lowercase characters match upper or lower
case; uppercase matches uppercase

- (#I) reenables case sensitivity
- (#b) activate backreferences for parenthesized

groups; store the matches in the $match array
and the indices in $mbegin and $mend

- (#B) ends backreferencing.

- (#aN) Use approximate matching! Allow up to N
errors in the match.
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Ye gods, there’s more!

Glob qualifiers appear in parentheses at the end
of a glob specifier...

*(.) matches regular files only

*(/) matches all directories

*(@) matches all symbolic links

*(x) matches all owner-executable files

*(s) matches all setuid files

*(f{go+w}) matches group or other-writeable
files!

This next one even scares me...

*(estring) executes string as shell code! The
currently matched file is available in $REPLY;
override the return with $reply or $REPLY.

Yipes!
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Recursive Globbing

One last trick...

$ ls **/foo*

Matches ’foo*’ in current directory or any subdir!
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...And now for something completely simple

for x in *; do mv $x ${x:r}.bak; done

Too much work! In zsh, just use

for x in *; mv $x ${x:r}.bak

Actually, this is now deprecated, so it’s a bad
habit that I keep using it.

Similar short forms exist for ’if’, ’while’, and
so on.

Even better better:

zmv ’(file0?)’ ’$1.bak’
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zmv

* zmv is the command-line rename tool you’ve
always wanted

$ zmv ’(*)-(*).mpeg3’ ’$2_$1.mp3’
$ zmv ’(*)’ ’${(L)1}’
$ alias mmv=’noglob zmv -W’
$ mmv *.pl.bak backups/*.pl
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Correction

* Oopsing commands? ’setopt CORRECT’

* Fat-fingering filenames? ’setopt CORRECT_ALL’

* Prevent a command from being corrected:
alias mv=’nocorrect mv’



zsh: Power Tools. Because having all your fingers is overrated.

MULTIOS and redirection

setopt MULTIOS for built-in tee functionality

$ ls >>file1 >file2 | cat

$ : > *

This truncates every file matched by *!

Well, not quite, as long as NO_CLOBBER is set.
For maximum damage, use

$ : >| *



zsh: Power Tools. Because having all your fingers is overrated.

More MULTIOS

How about a NULLCMD?

$ <first <second >combined

Change the default command by setting NULLCMD to
something other than ’cat’

$ >combined
zsh: file exists: combined

NOCLOBBER saves your bacon.
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Useful interactive features

* Multi-line editing

* Variable editing! ’vared path’

* ’zed’ is zsh’s built-in editor...use your zsh
bindings for a quick edit
(use C-j to save and exit or C-g to cancel)

* One of my favorites: the buffer stack

$ bindkey ’\eq’ push-line-or-edit

* Stuff the buffer with ’print -z’



zsh: Power Tools. Because having all your fingers is overrated.

Finally, completion

* I’m not going to tell you how to write new
completion functions

* I don’t want to be lynched.

* Besides, most anything you’d want to complete
is probably in there already.

* To get started using completion, just turn it
on when you run zsh-newuser-install
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Education through Completion

* Forgot an option? Just hit TAB

* Look at completions for ’tar’, ’mplayer’,
’emerge’, or ’dpkg’
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Bedtime reading

* man zsh and its 15 subpages (or just man
zshall)

* http://www.zsh.org

- Read the zsh user manual...friendly and
useful

* Tips and tricks

- http://www.rayninfo.co.uk/tips/zshtips.html
- http://www.grml.org/zsh/zsh-lovers.html

* http://www.zshwiki.org
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Fin.
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Selecting a random file from the current directory

$ files=(*); echo $files[$RANDOM%$#files]]
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For the brain-damaged by Windows: file associations

$ alias -s txt=less

This can be bad for security!
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Global aliases work anywhere in the line

$ alias -g ...=’../..’
$ alias -g L=’| less’
$ alias -g G=’| egrep’
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Name your favorite directories with CDABLEVARS
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Eschew cd with AUTOCD and AUTOPUSHD
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